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Taub-NUT Space as a Counterexample to Almost Anything 

C.W. Misner 

This lecture will discuss some of the peculiar properties of the 

metric 

2 2  2 2  ds2 = (t2 + & )(de + sin Qd8 

+ U(t)(2C)2(d$ + cosed8) 2 

where 

2 mt + C U(t) = -1 -f- 2 
t2 + k2 

This metric satisfied the empty-space Einstein equations 

R = O  
uv (3)  

and has been discovered by both of the prime exact-solution-finding 

methods mentioned by Kerr in his Lecture this morning. Taub (1951) 

discovered it in a systematic development of a class of metrics with 

high symetry. Later it was rediscovered by Newman, Unti, and Tamburino 

(1963) studying a class of algebraically special metrics. Actually, 
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Taub gave t h e  me t r i c  i n  a coord ina te  system covering only t h e  reg ion  where 

U ( t )  > 0 ("Taub space") i n  which t h e  t = cons t  hypersurfaces  are space-  

l i k e ,  whi le  Newman, Unt i ,  and Tamburino gave t h e  reg ion  where U ( t )  < 0 

("NUT space") i n  which the  $ - l ines  (t08 cons tan t )  are t i m e - l i k e .  

This Taub-NUT space has many unusual p r o p e r t i e s ,  some of which are 

a l s o  known i n  o t h e r  metr ics .  I w i l l  g ive  a s h o r t  l i s t  and then  d i scuss  

a few: 

- 1. Although t h e  Taub region U > 0 can  be i n t e r p r e t e d  as a 

cosmological s o l u t i o n  w i t h  homogeneous but  non- i so t ropic  space s e c t i o n s ,  

i t  evolves i n t o  NUT space which seems t o  have no reasonable  i n t e r p r e t a t i o n .  

- 2. The NUT reg ion  contains  c losed  t ime- l ike  l i n e s .  

- 3. The NUT reg ion  does r o t  con ta in  any decent  space- l ike  hyper- 

su r f aces ,  

- 4 .  Although t h e  curva ture  t enso r  vanishes  as one approaches i n f i n i t y  

uv-) L' i n  space - l ike  d i r e c t i o n s ,  asymptot ica l ly  r ec t angu la r  coordinates  (g 

do not  e x i s t .  

- 5 .  Taub space a l lows ,  besides  Eq. (1) another ,  i nequ iva len t ,  m a x i m a l  

a n a l y t i c  e x t  em ion. 

- 6 .  Taub-NUT space  i s  non-singular i n  a meaningful mathematical  sense  
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but i s  not geodesically complete. 

- 7.  There are closed geodesics (circles) on which one cannot extend 

the solution of the geodesic equation to infinite values of the 

path parameter. 

The first four points are discussed in my (1963) paper on NUT space 

and will not be considered further here. Points 6. and 7 .  are based on 

a study of the geodesics whi.ch Taub and I (1966) hope to finish writing 

soon. An example of inextendable closed geodesics (7 )  for a simpler 

metric is given in the paragraph containing Eq. (1) in my 1963 paper. 

The question of the non-uniqueness of analytic continuation for metrics 

(point 5) i.s also based on the paper by Taub and Misner (1966) and will 

occupy us for the reminder of this talk. 

Before disc-.msing ar.alytic cont.inuations we must discuss analyticity. 

A function of severai real variables f(xy .... z) is analytic at 

xoyo .-.. z 

non-zero radius of convergence. A function f(P) on a manifold M is 

analytic if it can represent as an analytic function f(x ,x , ... x ) 
of the coordinates in the various coordinate patches defining the analytic 

structure of the manifold (see Auslander and MacKenzie 1963 for the 

definition of manifolds and of differentiable structure). Tensors are 

analytic if their components are analytic functions of the coordinates 

is a metric only if in each coordinate patch. A symmetric tensor 

it has the proper signature (-+++); in particular g = det g cannot 

if it has a power series expansion about that point with a 
0 

1 2  4 

gUV 

UV 
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vanish. The metric of Eq. (1) fails to satisfy the signature requirement 

of 8 = 0,n since in these t$88 coordinates one has 

We will therefore try to interpret Eq. (1) as defining the metric on a 

coordinate patch where tJt88 have the ranges 

-a < t c + 
0 < $ < 4 n  

(5) 

Analyticity of the metric in this range is obvious, as is the choice of 

limits on t and 8. It remains to be seen whether there exists any 

larger manifold containing this coordinate patch on which the metric can 

be analytic. We will study some simpler examples before returning to this 

question. 

As a very simple example consider the metric 

ds2 = dt 2 + d6 2 

on a coordinate patch -03 t 0 3 ,  0 c 8 .e 2n. (Fig. 1). We are accustomed 

to interpret this metric as a cylinder R x S'. Here R means the real 

line -m < t c O D ,  and S' is the 1-sphere or circle (base of the cylinder). 

I shall not attempt to explain how one looks at a metric on a single 

coordinate patch, such as Eq. (1) or Eq. (6), and tries to guess what the 
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full manifold containing this patch should be. 

how to verify a guess. I guess that the metric 

But we shall now consider 

L 

0 

dxL + dy 
ds2 = 0 

L x + yL 

which is clearly analytic in the region 0 e x  2 2  + y < + QP might be 

related to the metric of Eq. ( 6 ) .  The coordinate transformation 

t x = e case 
t y = e sin0 

(7) 

shows indeed that these metrics are equivalent on the region 

(which is the largest region to which this correspondence between 

0 # 0 

xy 

and te coordinates can be 

to be preferred since it is 

xy plane. One may begin to 

extended in a one-to-one way) but Eq. (7) is 

analytic also on this positive x-axis of the 

worry about the "singularity" of x 2 2  + y 0 

in Eq. (7); since it corresponds to t + -00 in Eq. ( 6 )  it clearly is 

- not a singularity. A coordinate independent way of stating this is to 

note that every geodesic which approaches the boundary of the manifold 

(x + y + 0 or m) has infinite length. 2 2  

Some slightly more complicated metrics to serve as further examples 

are 

= dt 2 + de 2 + sin 2 0d8 ' 2  I ds 

= -(2 1 + cos0)dt 2 + de 2 + sin 2 2  0d8 
ds I1 3 
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c 

= dt 2 + e 2t de 2 + sin 2 2  ed4) 
111 ds 

The first metric here obviously represents a higher dimensional cylinder 

2 2 R x S which is just a linear (R) stack of ordinary spheres (S ), while 

the other two metrics represent some deformations of this first hyper- 

cylinder. 

first two metrics are analytic, the third is not even continuous over the 

whole cylinder R x S . Analyticity of the first metric (by which we 
now mean the existence of an analytic extension of it to cover all of 

R x S ) is demonstrated by writing 

What is not so obvious to the unpractised eye is that while the 

2 

2 

ds 2 1  = T(dx 2 + dy2 + dz 2 ) 

I r  

with 

2 r2 s x2 + y2 + z 

2 which is obviously analytic for 

Eq. (9) by the transformation 

0 < r < +a, and which corresponds to 

t x = e sinecosfi 

t y = e sinesin@ 

t 
z = e cose 

and write 2 
ds I1 Use the same transformation on 
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dsII 2 = ds12 + -(cos0 1 - 1)dt 2 3 

Then since cos0 = z/r is analytic for r2 > 0 and 

1 
r 

dt = y(xdy + ydy + zdz) 

is an analytic differential form in this region, the x y z  components of 

ds 

is verified from 

will also be analytic functions. The condition of proper signature I1 

in xyz coordinates leads to no interesting extension 2 
111 But studying ds  

for we have 

2 2 + (e2t - l)d0 = ds 2 
111 I ds 

and from the transformation (14) one sees that 

dz z xdx + ydy 
r (x + Y )  

- (x2 + y 
2 de = - 
r 2 2 2 %  

is not an analytic differential form on the ,z-axis where x/(x 2 + y 2 %  ) 

for instance is not a continuous function. We could then ask whether some 

coordinate transformation different from Eq. (14) might not lead to a form 
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which allowed some analytic extension beyond the region to 2 
Of dsIII 
-Q) e t e + 01, 0 < 8 n, 0 e 8 < 27 where Eq. (11) deomonstrates 

analyticity. But a computation of the curvature tensor (see Appendix A 

of my 1963 paper for rapid computational techniques which here gave 

R starting from Eq. (11) in twelve minutes work) shows that 
UUolB 

t R. . ~ ~ j  - % R ~  = 2(e sine)-‘ 
1 J  

The lines of infinite curvature at 8 = 0 and 8 = are therefore 

natural boundaries to this space; since the metric puts these lines 

arbitrarily close to regular points of the space we say that this space 

is intrinsically singular. 

An analytic extension of the line element of Eq. (1) is obtained by 

the coordinate transformation 

This transformation can also be written 

.. 

where q is the quaternion 
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q = w + i.x + j y  + kz 

2 
and i j k  are t h e  imaginary quaternion u n i t s  which obey k = -1, 

i j  = - j i  = k ,  etc. This t r ans fo rmt i .on  shows t h a t  $e8 are the  "Euler 

angle"  coord ina tes  on S which are fami1ia.r i n  d i scuss ions  of t h e  

r o t a t i o n  group SO(3). (See, f o r  i n s t a n c e ,  Corben and S t e h l e  1960, 

Appendix IV. ) 

3 

I n  o rde r  t o  w r i t e  t h e  Taub-NL'T me t r i c  ii. mxyz coord iqa tes  i t  i s  

convenient f i r s t  t o  de f ine  s e v e r a l  d i f f e r e n t i a l  forms 

(21) 

2. 
These d i f f e r e n t i a l  f o r m  a r e  obvio-;sly analyt ic .  or.. t h e  reg ion  0 141 <a, 

and from t h e  fol lowing equat ion M e  see t h a t  the componer-ts of the transformed 

m e t r i c  a r e  a lso 

This eqciation can aLso be w r i t t e n  



ds 2 = g #UV 

(111 

vhere 

0 
= dt 

and 
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(24) 

In this form it is easy to verify the signature requirement on the metric 

is satisfied, for we need only verify the signature of the g matrix 

in Eq. (26) and check that ths basis differential froms of Eq. (25) are 
Llv 

linearly independent. This lin.ear independence is clear when one notes 

th.at the coefficients in Eqs. (21) form non-zero orthogonal vec tors  Fr. t h e  

standard flat Eudjdean metric on wxyz space. The signature-of g in 

Eq. (26) is obvious when U(t) = 0, and cannot change since 
LlV 

g = d e t g  = - 1 # 0  (27) uu 

2 It can be shown that themetric of Eq. (23) on the domain 0 c Iql c + OD 

of wxyz space is maximal in the sense that it cannot be identified with 

a coordinate patch on an even larger connected manifold. Taub and I (1966) 



have shown this by studying its geodesics and verifying that every geodesic 

arc which approaches the boundaries ( lqI2 + 0 or Iq12 4 a) is infinitely 

long as measured by any affine path parameter for the geodesic equation. 

In contrast, 

of, a coordinate patch can outer it with finite, even arbitrarily small, 

changes in the path parameter. 

geodesics which start from points outside, but on the boundary 

Let us now turn to another question of analytic continuation, its 

uniqueness. We may and do now choose to consider Eq. (23) on the region 

0 e Is\" e a 

which is the region 

as giving one maximal analytic extension of Taub space, 

where t and t2 are the two zeros of U(t>. Since analytic continuation 

of functions on the real line is a unique process, we might expect this also 

to he true for analytic metric manifolds. 

first introduce a new coordinate system on Taub space by the transformation 

1 

To exhibit non-uniqueness we 

in which we retain the old t@8 coordinates. The metric then becomes 

2 2  ds2 = (t2 + t2)(dQ2 + sin ed6 ) 
+u(t) (2&)2(d1T~ + cosedd) 2 
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which differs from Eq. (1) only by one minus sign and the capitalization of 

Although the transformation (29) is only regular in the region 

tl e t e t2, limited by logarithmic singularities at the zeros of U(t), 

the metric of Eq. (30) can clearly be continued to all values of t and 

its analyticity verified by a transformation analogous to Eq. (20) 

%tefk8,+iee%k\D Q = W + iX + jY + kZ = e 

Rather than continue with the details of this example, we consider 

a simpler case based on the 2-dimensional metric 

as2 = 2dgdt + tdQ2 (32) 

which can be interpreted (by assigning 

metric of signature (-,+) on the cylinder S x R. The most significant 

difference between this example and Taub-NUT space is that S x R is 

Q a period of , say, 2n) as a 
1 

1 

--a. lIuL ur,,ryly n;,m cnnnected and can - 
the range --03 to SCO) while 

be covered by the plane R x R (assign Q 

S x R is simply connected and no range 3 

for JI larger than 0 to 4n is possible there. An inequivalent 

analytic extension of the region t > 0 in the metric (32) is obtained 

by first making the coordinate transformation 

Jr = - 24nt 

on the t > 0 region. A simple computation using 

(33) 



dg = d Q -  2t-ldt 

in Eq. (32) gives 

2 2 ds =: -2dUt + td9 
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(34) 

(35) 

The coordinate transformation (33) shows the equivalence of the metrics 

(32) and (35) on the regions t > 0. To show their inequivalence 

when each is considered to define a metric manifold on which t varies 

from -w  to - k ~  we look at the curve defined on the $t cylinder by 

g = o  
t = -x  (36) 

with -a < c + (I). Since (A) and t(X) are each analytic functions of 

X here this is an analytic curve. Its image on the t > 0 part of 

the W cylinder is also an analytic curve 

where 1 < 0. However the tangent vector to this curve is 

t v = dt/dh = -1 
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\Tf and becomes infinite (i.e. v + -a) as h -$ 0. Since the analytic 

structure of the cylinder is defined by taking d 9  to be an analytic 

differential, an analytic extension of this curve segment (-co c 1 c 0) 

would have to make d W d X  an analytic function at h = 0, which is 

impossible. Thus this curve cannot be extended in the Qt manifold, 

while it can be in the $t manifold, demonstrating the inequivalence of 

these two manifolds. 

The geodesics for the metric (32) are easily obtained. One finds 

that any geodesic segment from a finite point ( J r  t ) to a boundary (t = +co) 
is infinitely long in the sense of the affine path parameter, so this 

space is maximal. However not all geodesics can be extended to parameter 

values both iw and 1 -$ -OD. For instance 

0 0  

t = O  

= -24,nX 
(39) 

is a (null) geodesic, where 1 has a maximum range 0 < h <a. Consequently 

this space is not complete. 

A further curious property of the example of Eq. (32) which was dis- 

covered in a discussion with Bonner is that it is flat. This one may 

verify by starting from the flat metric 

2 2 2 ds = de - dT) = d([ + q)d([ - T)) 



. 
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and making the transformation 

under which the half plane 7 7 5 covers the t$ cylinder infinitely 

many times. 
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Fig. 1 Both the cylinders shown here are flat and can be represented 

away from the seam ( b  = 0 or 2n) by the metric of Eq. (6). 

Only (a) is a smooth (analytic) manifold, while (b) with its 

sharp edged seam does not inherit a useful class of differentiable 

functions from the Eiiclidean 3-space in which it is embedded. 


